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Light curves of oscillating neutron stars

Umin Lee1� and Tod E. Strohmayer2�
1Astronomical Institute, Tohoku University, Sendai, Miyagi 980-8578, Japan
2Laboratory for High Energy Astrophysics, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA

Accepted 2005 May 12. Received 2005 April 9; in original form 2005 February 23

ABSTRACT
We calculate light curves produced by r modes with small azimuthal wavenumbers, m, prop-
agating in the surface fluid ocean of rotating neutron stars. We include relativistic effects due
to rapid rotation, and propagate photons from the stellar surface to a distant observer using the
Schwarzschild metric. The wave motions of the surface r modes are confined to the equatorial
region of the star, and the surface pattern of the temperature variation can be either symmet-
ric (for even modes) or antisymmetric (for odd modes) with respect to the equator. Because
for the surface r modes the oscillation frequency in the corotating frame of the star is much
smaller than the rotation frequency, �, we employ the approximation in which the oscillation
frequency in the inertial frame, σ , is given by σ = −m�. We find that the even, m = 1 r mode
produces the largest light variations. The dominant Fourier component in the light curves of
these modes is the fundamental having σ = −�, and the first harmonic component having
σ = −2� is always negligible in comparison. The dominant Fourier component of the even,
m = 2 r modes is the first harmonic. Although the odd r modes produce smaller amplitude light
variations compared with the even modes, the light curves of the former have a stronger first
harmonic component. If both m = 1 and 2 r modes are excited simultaneously, a rich variety
of light curves is possible, including those having an appreciable first harmonic component.
We show that the phase difference, δ − δE , between the bolometric light curve and that at
a particular photon energy can possibly be used as a probe of the stellar compactness, R/M,
where R and M are the radius and mass of the star. We find that hard leads are expected in
general rather than hard lags, although there exists a parameter space of R and the inclination
angle i that produces hard lags for the odd modes.

Key words: stars: neutron – stars: oscillations – stars: rotation.

1 I N T RO D U C T I O N

It is now widely accepted that millisecond oscillations during ther-
monuclear X-ray bursts (hereafter, burst oscillations) on accreting,
weakly magnetized neutron stars in low-mass X-ray binary (LMXB)
systems are produced by spin modulation of a slowly moving, non-
uniform brightness pattern on the stellar surface (see Strohmayer
et al. 1996; Strohmayer & Bildsten 2004; van der Kils 2004). In
addition to revealing the spin frequency, these oscillations encode
information about the global properties of the neutron star. A num-
ber of attempts have been made to model burst oscillations and thus
to infer these properties (e.g. Muno, Özel & Chakrabarty 2002b;
Nath, Strohmayer & Swank 2002; Poutanen & Gierliński 2003;
Bhattacharyya et al. 2005); however, uncertainties associated with
the exact nature of the brightness pattern make a unique interpreta-
tion of the data problematic.

�E-mail: lee@astr.tohoku.ac.jp (UL); stroh@clarence.gsfc.nasa.gov (TES)

As of 2005 February, the number of LMXBs that exhibit burst
oscillations amounts to 14, and two of these contain millisecond
X-ray pulsars (see, for example, Chakrabarty et al. 2003; Strohmayer
et al. 2003). For most burst oscillations a single oscillation frequency
is found that displays a positive frequency drift �ν burst of a few
Hz from the start to the tail of a burst. In the decaying tail, the
frequency often approaches an asymptotic value (e.g. Strohmayer
& Markwardt 1999). The asymptotic frequencies are stable to a few
parts in 1000 in bursts observed over several years from any given
source (Strohmayer et al. 1998b; Muno, Chakrabarty & Galloway
2002a). Background subtracted light curves for the burst oscillations
are in most cases well fitted by a single sinusoid, the frequency of
which we will call the fundamental frequency. Harmonic content in
the light curves is generally small (Strohmayer & Markwardt 1999;
Muno, Özel & Chakrabarty 2002b). Indeed, to date there exists only
one strong detection of a first harmonic, in the millisecond X-ray
pulsar XTE J1814−338 (Strohmayer et al. 2003; Bhattacharyya
et al. 2005). On average, the rms amplitudes of the burst oscillations
are 2–10 per cent, and generally increase with photon energy (Muno,
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Özel & Chakrabarty 2003). Muno et al. (2003) also explored the
energy dependence of the oscillation phases of burst oscillations.
They found either constant phase lags with energy or in some cases
evidence for modest hard lags, behaviour that is opposite to what
one would expect from relativistic motion of a simple hotspot on the
stellar surface (e.g. Ford 1999). Interestingly, where phase lags have
been measured in the accreting millisecond pulsars they all show
soft lags, consistent with a rotating hotspot model (Cui, Morgan &
Titarchuk 1998; Poutanen & Gierliński 2003).

As noted above, a non-uniform brightness distribution on the sur-
face of rotating neutron stars is almost certainly responsible for the
burst oscillations, and several models have so far been proposed to
explain the inhomogeneous pattern. As a typical model, Strohmayer
et al. (1997) suggested the oscillation originates from hot regions
(hotspots) in a thermonuclear burning layer that expands and de-
couples from the neutron star at the start of the burst. Although a
simple hotspot appears to be consistent with oscillations observed
during the onset of some bursts (see Strohmayer et al. 1998a), fur-
ther calculations have suggested that a rigidly rotating, hydrostati-
cally expanding burning layer produces too small a frequency drift
(Cumming & Bildsten 2000; Cumming et al. 2002).

There have been numerous efforts to calculate light curves
produced by hotspots on the surface of rotating neutron stars
(e.g. Pechenick, Ftaclas & Cohen 1983; Chen & Shaham 1989;
Strohmayer 1992; Page 1995; Braje, Romani & Rauch 2000;
Weinberg, Miller & Lamb 2001; Muno et al. 2002b; Nath,
Strohmayer & Swank 2002; Poutanen & Gierliński 2003; Bhat-
tacharyya et al. 2005). In the modelling of the light curves, many
parameters are employed, for example, the number of hotspots, their
location with respect to the rotation axis, their angular sizes, the
inclination angle between the line of sight and the rotation axis,
the angular dependence of the specific intensity, the temperature of
the spots, the temperature contrast between the spots and their sur-
roundings, the mass, radius, and spin frequency of the star. As noted
above, burst oscillation light curves are remarkably sinusoidal. Al-
though the light-curve amplitudes are dependent on the relativistic
parameter R/M, which is a parameter of particular importance, it is
obvious that there remain parameters other than R/M that affect the
amplitudes, such as the angular sizes and locations of the hotspots
and the inclination angle (e.g. Pechenick et al. 1983; Weinberg et al.
2001; Muno et al. 2002b). In this sense it is quite important to find
other observational quantities that can be used to obtain independent
constraints on these parameters. The energy dependences of phase
lags are an example of potentially important observational quantities
that carry useful information about the neutron star. Taking account
of the special relativistic Doppler boosting of X-ray photons due
to rapid rotation of the star (Ford 1999; Weinberg et al. 2001), the
hotspot model can produce hard leads more or less consistent with
those observed in the millisecond X-ray pulsar SAX J1808.4−3658
and IGR J00291+5934 (Poutanen & Gierliński 2003; Galloway
et al. 2005), but the model appears to be at odds with the sugges-
tion of hard lags in some burst oscillations (Muno et al. 2003).
Although it may be possible to produce hard lags via a hot Comp-
tonizing corona, it is worth exploring in more detail whether more
complex brightness patterns (such as oscillation mode patterns) on
the stellar surface might be consistent with the production of hard
lags.

By inferring the hotspot size using the observationally obtained
blackbody flux Fbb, Poutanen & Gierliński (2003) have succeeded
in estimating the radius of the millisecond X-ray pulsar SAX
J1808.4−3658 assuming an appropriate range of mass for the star.

Recently, Strohmayer et al. (2003) have found the first harmonic
component in the light curves of burst oscillations from the accret-
ing millisecond X-ray pulsar XTE J1814−338, and Bhattacharyya
et al. (2005) obtained a useful constraint on the ratio R/M assuming
a single hotspot model.

As alluded to above, the hotspot model is not always successful
in producing the observed light curves of the burst oscillations. As
discussed by Muno et al. (2002b), a small hotspot in a completely
dark background is likely to produce light curves with too large an
amplitude as well as having strong harmonic components not seen
observationally. To suppress the large amplitudes and the harmonics,
we have to assume, for example, a hotspot of angular size α ∼π/2 or
almost completely antipodal hotspots, the assumptions of which are
not necessarily physically well motivated. It is therefore important
to pursue alternatives to the hotspot model.

In this paper, we calculate light curves of rotating neutron stars
assuming the surface temperature perturbation pattern caused by
surface r modes propagating in the fluid ocean of a mass accreting
neutron star (Lee 2004). It was Heyl (2004) who first argued that the
r modes with low m may play a possible role for burst oscillations.
The surface r modes are rotationally induced oscillations with very
low frequencies in the corotating frame of the star. The r modes
have dominant vorticity (∇×v′)r and are basically just large-scale
vortices (see Spitkovsky, Levin & Ushomirsky 2002). If we assume
axisymmetry of the equilibrium configuration of the rotating star, the
time dependence of the temperature perturbation may be given by
eiσ t , where σ denotes the oscillation frequency in the inertial frame.
If we let ω and � denote the oscillation frequency in the corotating
frame and the spin frequency of the star, respectively, we have σ =
ω − m�, which leads to σ ≈ −m� for the surface r modes, be-
cause |ω| � |m�|, where m is an integer representing the azimuthal
wavenumber around the rotation axis. The time dependence of the
perturbation is thus to good approximation given by e−im�t . Because
only the oscillation modes having low m will produce light variations
of appreciable amplitude, in this paper, we only consider the surface
r modes with m = 1 or m = 2. We briefly describe the method of
calculation in Section 2. In Section 3 we discuss some of our numer-
ical results with relevance to burst oscillations. In Section 4 we give
a discussion, and we give a summary of our principal conclusions in
Section 5.

2 M E T H O D O F S O L U T I O N

The method of calculating light curves of rotating neutron stars
is similar to those discussed by Pechenick et al. (1983), Page
(1995) and Weinberg et al. (2001). Instead of presuming the pres-
ence of a hotspot on the surface of a rotating neutron star, we as-
sume that the temperature varies across the surface with the an-
gular distribution appropriate for a surface r mode propagating
in the fluid ocean of the star. The surface r modes, which have
very low oscillation frequencies in the corotating frame of the
star, can plausibly be excited during thermonuclear bursts (Lee
2004).

To describe oscillations of rotating neutron stars, we employ an
xyz coordinate system whose origin is at the centre of the star with
the rotation axis along the z-direction. For convenience, we also
assume that the observer is in the x–z plane. In this coordinate sys-
tem, the oscillations of rotating neutron stars are described by em-
ploying spherical polar coordinates (r , θ , φ) with the axis θ = 0
being the z-axis. Then, the displacement vector ξ(r , θ , φ, t) is
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given by

ξr =
∞∑
j=1

Sl j Y
m
l j

eiσ t , (1)

ξθ =
∞∑
j=1

(
Hl j

∂

∂θ
Y m

l j
+ Tl ′j

1

sin θ

∂

∂φ
Y m

l ′j

)
eiσ t , (2)

ξφ =
∞∑
j=1

(
Hl j

1

sin θ

∂

∂φ
Y m

l j
− Tl ′j

∂

∂θ
Y m

l ′j

)
eiσ t , (3)

and the Lagrangian perturbation of the temperature is given by

δT =
∞∑
j=1

δTl j Y
m
l j

eiσ t . (4)

Here, σ is the oscillation frequency in the inertial frame, and Ym
l

denotes the spherical harmonic function with degree l and azimuthal
wavenumber m, and lj = |m| + 2( j − 1) and l ′

j = lj + 1 for even
modes, and lj = |m| + 2( j − 1) + 1 and l ′

j = lj − 1 for odd modes,
and j = 1, 2, . . . . The functions ξ(r , θ , φ, t) and δT are obtained as a
solution to linear differential equations for oscillations of a rotating
star, and we need to specify a normalization condition to determine
the amplitudes. Because the surface r modes have dominant toroidal
components T l

′
j , we will employ the amplitude normalization given

by |Re[iTl ′1 (R)/R]| = 1.
The surface temperature of a rotating star that pulsates in various

oscillation modes may formally be given by

T (R, θ, φ, t) = T0 + Re

{∑
α

Cα

[∑
j�1

δT α
l j

(R)Y m
l j

(θ, 0)

]

× ei(mφ+σα t)

}
,

(5)

where T 0 is the mean surface temperature, α indicates a combination
of indices that distinguish various oscillation modes, and σ α and
C α denote, respectively, the oscillation frequency and a complex
constant representing the amplitudes of the oscillation mode α. Note
that by introducing C α in equation (5) we mean |Re[iT α

l ′1
(R)/R]| =

|Cα|. Using the oscillation frequency ω = σ + m� in the corotating
frame, we have

mφ + σαt = mφ̂ + ωαt, (6)

where φ̂ = φ − �t is the longitude in the corotating frame.
To consider photon trajectories around a neutron star, it is conve-

nient to introduce another coordinate system x ′ y′z′, for which the
origin is at the centre of the star, and the z′-axis is pointing to the
observer and y = y′. If we let i denote the inclination angle between
the z-axis and the z′-axis, we have

x = x ′ cos i + z′ sin i, y = y′,
z = −x ′ sin i + z′ cos i, (7)

and it is easy to derive the relation between the two spherical polar
coordinate systems (r , θ , φ) and (r ′, θ ′, φ′), where the axis of θ ′ =
0 is the z′-axis.

If we assume the Schwarzschild metric around the neutron star
with mass M and radius R, the number flux, per photon energy E ∞,
of thermal photons emitted from the stellar surface and received by

a distant observer may be given by (e.g. Page 1995)

1

S

d2 N (E∞)

dt∞dE∞
= 2π

c2h3

R2
∞

D2
E2

∞

∫ 1

0

2q dq

∫ 2π

0

×dφ′

2π

1

e f e−η E∞/kBT − 1

≡ 2π

c2h3

R2
∞

D2

E2
∞

ee−η E∞/kBT0 − 1
G E∞ (t∞), (8)

and integrating equation (8) with respect to the variable E ∞ leads
to

1

S

dN (E∞)

dt∞
= 2.404 × 2π

c2h3

R2
∞

D2

∫ 1

0

2qdq

∫ 2π

0

dφ′

2π

(
kBT

f e−η

)3

≡ 4.808π

c2h3

R2
∞

D2

(
kBT0

e−η

)3

G(t∞). (9)

Here, D is the distance to the observer, T is the surface temperature,
kB is the Boltzmann constant, c is the velocity of light, and h is the
Planck constant. We have neglected, for simplicity, the interstellar
absorption effect and the dependence of the effective area S of the
detector on the photon energy. Here,

R∞ = e−η R (10)

is the radius of the star seen by a distant observer, and dt ∞ =
e−η dt denotes the increment of the coordinate time t ∞, where

eη =
√

1 − RG/R, (11)

RG = 2GM/c2 is the Schwarzschild radius, and dt is the increment
of the proper time at the surface of the star. Note that �∞ = eη�

because �∞ dt ∞ = � dt , where �∞ is the angular spin frequency of
the star seen from infinity. If we let Ee and E ∞ denote, respectively,
the photon energy in the corotating frame of the star at the surface
and the photon energy received by a distant observer, we have

Ee = f e−η E∞, (12)

where the factor f , representing the Doppler shift in the photon
energy from e−η E ∞ in the non-rotating frame at the stellar surface
to Ee in the corotating frame, is given by

f = γ (1 − v · o/c) . (13)

Here, v = Ω×R = R� sin θeφ where eφ is the unit vector in the
azimuthal direction, o is the unit vector along the trajectory of
a photon at the surface, and γ = 1/

√
1 − v2/c2. Note that the

four vector of a photon in the non-rotating frame may be given by
oµ = e−η E ∞(1, o). Using the angle ζ (θ ′) between the local normal
and the photon trajectory, at the surface, reaching the observer at
infinity, the variable q in equations (8) and (9) is defined by

q ≡ sin ζ, (14)

and the relation between θ ′ and q is determined by the integration
given by

θ ′(q) =
∫ RG /2R

0

qdu√
(1 − RG/R) RG/2R − (1 − 2u)u2q2

. (15)

The maximum value θ ′
max occurs when q = 1 and is shown as a

function of the radius R in Fig. 1 for M = 1.4 M	 (solid line) and
for M = 2 M	 (dashed line). Because o at the stellar surface is
given by

o = sin(θ ′ − ζ ) cos φ′i ′ + sin(θ ′ − ζ ) sin φ′ j ′ + cos(θ ′ − ζ )k′,(16)
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Figure 1. θ ′
max as a function of the radius R for M = 1.4 M	 (solid line)

and M = 2 M	 (dashed line).

where i ′, j ′ and k′ are the orthonormal vectors parallel to the
x ′-, y′- and z′-axes, respectively, we have

v · o
�R sin θ

= sin(θ ′ − ζ ) (cos φ sin φ′ − sin φ cos φ′ cos i)

− cos(θ ′ − ζ ) sin φ sin i . (17)

Note that without light bending so that θ ′ = ζ , we simply have
v · o = −�R sin φ sin i sin θ . The aberration effect may be given
by

cos ζe = e−η E∞
Ee

cos ζ, (18)

where ζ e is the angle measured in the corotating frame of the star.
For waves whose φ and t dependence is given by eimφ+iσ t , it is

easy to incorporate the time-delay effect that arises because of the
difference in the path lengths of photons emitted from different
points on the surface of the star. Because the traveltime of a photon
from a point having the impact parameter b = qR∞ at the surface
of the star to an observer at infinity is given by

t∞(b) = RG

c

∫ ∞

R

1√
1 − (1 − RG/r )(b/r )2

(
1 − RG

r

)−1
dr

RG
, (19)

the time lag may be defined by

�t∞(b) ≡ t∞(b) − t∞(0). (20)

Replacing t ∞ by t ∞ − �t ∞(b), we rewrite the time and φ depen-
dence eimφ+iσ t of the perturbations as

eimφ+iσ t e−ieησ�t∞(b) (21)

so that we can take account of the time-lag effects in light-curve
calculations (see, for example, Cadeau, Leahy & Morsink 2005).

For the light curves G(t) or G E∞ (t), we calculate the discrete
Fourier transform aj ( j = −N/2, . . . , N/2 − 1) defined by

a j =
N−1∑
k=0

G(tk)e2πi f j tk (22)

where N is the total number of sampling points in the time-span
�T , and tk = k�T /N and fj = j/�T , and |aj| = |a− j | for a real

function G(t). To indicate the amplitude of the light variation with
the frequency fj, we use the quantity defined by

A(ω j ) = 2|a j |/N , (23)

where ω j = 2π fj.

3 N U M E R I C A L R E S U LT S

The surface r modes propagating in the fluid ocean of a rotating neu-
tron star may be classified in terms of three quantum numbers (m, k,
n), where m is the azimuthal wavenumber around the rotation axis,
k is the number of latitudinal nodes, and n is the number of radial
nodes of the eigenfunctions. For the quantum number k, we count
the latitudinal nodes of the eigenfunctions Re [δT (R, θ )], and for the
quantum number n we count the radial nodes of the eigenfunction
iTl1 (r ). In this paper, we exclude the r modes of l ′ = |m| for light-
curve calculations, because their frequency changes during bursts
are much larger than is suggested by observations (e.g. Cumming
& Bildsten 2000; Lee 2004). Then, the r modes with the quantum
number k = 0, 1, 2, . . . correspond to the r modes of l ′ = |m| + 1,
|m| + 2, |m| + 3, . . . , respectively, and the corotating frame fre-
quency ω decreases in this order for given m, n and �. The r modes
with even k are denoted ‘even’ modes, and have eigenfunctions
δT (R, θ ) that are symmetric about the equator of the star, while the
r modes with odd k are called ‘odd’ modes and are antisymmetric
about the equator.

For light-curve calculations in this paper, we consider only the
fundamental r modes with no radial nodes (n = 0) of the eigenfunc-
tion iTl j , because they are the most strongly excited in thermonuclear
bursts (Lee 2004). In addition, because the r modes associated with
high m and k are unlikely to produce light variations with appreciable
amplitudes, we restrict our numerical analysis to the fundamental
modes with m = 1 or m = 2 and with k = 0 or k = 1. Employing
these simplifications, and assuming two r modes with different m
may be excited, we can express the surface temperature for light-
curve calculation as

T (R, θ, φ, t) = T0 + Re
[
C1δT α1 (R, θ )ei(φ+σα1 t)

+C2eiχδT α2 (R, θ )ei(2φ+σα2 t)
]
, (24)

where

δT α1 (R, θ ) =
∑
j�1

δT α1
l j

(R)Y 1
l j

(θ, 0),

δT α2 (R, θ ) =
∑
j�1

δT α2
l j

(R)Y 2
l j

(θ, 0), (25)

C1 = Cα1 and C2 = Cα2 are here real constants for the amplitudes
of the modes, and χ is a real parameter, giving the phase difference
between the two r modes. If we define α = (m, k, n), we have α1 =
(1, 0, 0) and α2 = (2, 0, 0) for the even modes, and α1 = (1,
1, 0) and α2 = (2, 1, 0) for the odd modes. For the oscillation
frequencies, we adopt the approximation that σα1 = −� and σα2 =
−2�. The parameters we need to calculate the function G(t) defined
by equation (9) are the mass M, the radius R, the angular rotation
speed � of the star, the oscillation amplitudes C1 and C2, the phase
difference χ between the two modes, and the inclination angle i. For
the function G E∞ (t) defined by equation (8), we need in addition
the surface temperature T 0 and the photon energy E ∞.

For the r-mode calculation, we use a mass-accreting envelope
model with the rate Ṁ = 0.1ṀEdd for a neutron star having M =
1.4 M	 and R = 106 cm, where ṀEdd = 4πcR/κe with κ e being
the electron scattering opacity. This envelope model is a fully ra-
diative model with no convective regions in it, and the detail of the
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Table 1. Oscillation frequencies ω̄ and σ̄ /m for the fundamental (n = 0)
r modes for the mass-accreting envelope model with Ṁ = 0.1ṀEdd for M
= 1.4 M	 and R = 10 km. Here the frequencies ω̄, σ̄ and �̄ are normalized

by
√

G M/R3.

�̄ = 0.2 �̄ = 0.4
k m ω̄ σ̄ /m ω̄ σ̄ /m

0 1 5.31(−3) −0.1947 5.31(−3) −0.3947
2 1.02(−2) −0.1949 1.04(−2) −0.3948

1 1 3.24(−3) −0.1968 3.22(−3) −0.3967
2 6.32(−3) −0.1968 6.36(−3) −0.3968

envelope calculation is given in Strohmayer & Lee (1996) and Lee
(2004). To calculate the modes propagating in the mass-accreting
envelope of a rotating neutron star, we follow the method described
by Lee & Saio (1987, 1993), which is a fully non-adiabatic method
and makes it possible to obtain the temperature variation δT itself as
well as the relation between the temperature variation and the dis-
placement vector components. Note that the formulation employed
for the envelope and oscillation mode calculations is Newtonian,
and no general relativistic effects are included. In Table 1, the os-
cillation frequencies ω̄ and σ̄ /m are tabulated for the fundamental
r modes with low m and k for �̄ = 0.2 and �̄ = 0.4, where the
frequencies ω̄, σ̄ and �̄ are normalized frequencies by

√
G M/R3.

For M = 1.4 M	 and R = 10 km, we have ω/2π = 686ω̄ Hz. For
the r mode with (k, m) = (0, 1) in Table 1, for example, we obtain
ω/2π = 3.64 Hz, the value of which is smaller by a factor of 2–3
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Figure 2. δT (R, θ )/T 0 as a function of cos θ for �̄ = 0.2: (a) for the fundamental even r mode with m = 1; (b) for the fundamental even r mode with m =
2; (c) for the fundamental odd r mode with m = 1; (d) for the fundamental odd r mode with m = 2, where the solid and dotted lines indicate the real and the
imaginary parts, respectively. Here, the amplitude normalization for the mode is given by |Re[iTl1 (R)/R]| = 1 at the surface.

than the estimation given by Piro & Bildsten (2005). This differ-
ence may be because we assume a steadily mass-accreting envelope
whose temperature is lower than the temperature assumed in Piro
& Bildsten (2005). It is important to note that the corotating frame
oscillation frequency ω̄ is almost insensitive to �̄ for rapidly rotat-
ing stars (Lee 2004), and that for a given k the inertial frame pattern
speed σ̄ /m for m = 2 is nearly equal to that for m = 1, which may
justify the simplification of σ = −m�. The temperature variations
δT (R, θ )/T 0 caused by the surface r modes for �̄ = 0.2 are shown
in Fig. 2, where Figs 2(a)–(d) are for α = (1, 0, 0), (2, 0, 0), (1, 1, 0)
and (2, 1, 0), respectively, and the solid and dashed lines denote the
real and imaginary parts, respectively, of the function δT (R, θ )/T 0.
Here, the amplitude normalization is given by |Re[iTl ′1 (R)/R]| = 1
at the surface of the star. We note that the functions δT (R, θ )/T 0

and iTl1 (R)/R have comparable amplitudes to each other at the stel-
lar surface, and that the imaginary part of δT (R, θ )/T 0 is much
smaller than the real part. Heyl (2004) employed the normalization
of the mode so that the effective temperature varies over the surface
from zero to twice the underlying value. This normalization corre-
sponds to the amplitudes of the horizontal displacement comparable
to the radius of the star. For the light-curve calculations in this pa-
per, for simplicity, we exclusively use Cj = 0.2, corresponding to
iTl1 (R)/R = 0.2 (see also the next paragraph). The θ dependence
of the function δT (R, θ )/T 0 for the even (odd) r mode with m = 1
is quite similar to that for the even (odd) r mode with m = 2 except
for the fact that the maxima of the functions for m = 2 are larger
than those for m = 1. In this paper, the temperature perturbations
δT (R, θ ) calculated for R = 10 km will be used for different values
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664 U. Lee and T. E. Strohmayer

of R for simplicity. Applying the approximation σ = −m�, we have
mφ + σ αt = mφ − m�t , and we call the Fourier amplitudes A(ω j )
at ω j = � and ω j = 2� the fundamental and the first harmonic
components, respectively.

Because we are applying a linear theory of stellar pulsations,
we cannot self-consistently determine the amplitudes of the modes,
which forces us to treat the oscillation amplitudes as parameters in
the modelling. For simplicity, we use C 1 = 0.2 for m = 1 and C 2 =
0.2 for m = 2 for the mode amplitudes throughout the following
calculations. Because the toroidal component of the displacement
vector is dominant for the r modes, the velocity, v, of a surface
fluid element may be approximately given by v ∼ |ωiTl1 (R)| =
R
√

G M/R3|ω̄| × |iTl1 (R)/R|. Because |ω̄| � 0.01, we have the
fluid velocity v � 10−3 c for |iTl1 (R)/R| ∼ 0.2 if we adopt the stellar

parameters M = 1.4 M	 and R = 10 km, for which R
√

G M/R3 ∼
0.5c. If we use the sound velocity v s = k BT /µH at the surface, we
have v s ∼ 10−3 c for T = 107 K and µ = 0.5, where H and µ denote
the hydrogen mass and the mean molecular weight, respectively. For
the value of C 1 = 0.2 (or C 2 = 0.2) for the amplitude parameter, the
fluid velocity at the surface is much smaller than the velocity of
light and is comparable to or less than the local sound velocity at
the surface.

3.1 Light curves produced by a single r mode with low m

Because the imaginary part of δT (R, θ )/T 0 is much smaller than
the real part, assuming that only a single r mode of low m is excited,
we may simply write the surface temperature as

T = T0 [1 + C(θ ) cos(mφ − m�t)] , (26)

where C(θ ) = Re [CjδT (R, θ )/T 0] and j = 1 or j = 2. Note that
setting the origins of times t and t ∞ appropriately, we can assume
�t = �∞ t ∞. The function G(t) is given by

G(t) = G0 + Gc
1 cos m�t + Gs

1 sin m�t + Gc
2 cos 2m�t

+Gs
2 sin 2m�t + · · · , (27)

where

G0 =
∫ 1

0

2qdq

∫ 2π

0

dφ′

2π

1 + 1.5C2(θ )

f 3
, (28)

Gc
1 =

∫ 1

0

2qdq

∫ 2π

0

dφ′

2π
3 f −3C(θ )

[
1 + C2(θ )

4

]
× cos m(φ + �φ), (29)

Gs
1 =

∫ 1

0

2qdq

∫ 2π

0

dφ′

2π
3 f −3C(θ )

[
1 + C2(θ )

4

]
× sin m(φ + �φ), (30)

Gc
2 =

∫ 1

0

2qdq

∫ 2π

0

dφ′

2π

3

2
f −3C2(θ ) cos 2m(φ + �φ), (31)

Gs
2 =

∫ 1

0

2qdq

∫ 2π

0

dφ′

2π

3

2
f −3C2(θ ) sin 2m(φ + �φ). (32)

Here, �φ = �∞�t ∞(b), and we have replaced t ∞ by t ∞ − �t ∞(b)
to calculate the light curves at t ∞ at the observer. It may be important
to note that the coefficients Gs

1 and Gs
2 vanish if we assume f = 1

and �φ = 0. Equation (27) indicates that there appears a periodic
component having the frequency 2m� unless Gc

2 and Gs
2 vanish

simultaneously. The terms associated with the frequency m�, for
example, can be rewritten as

Gc
1 cos m�t + Gs

1 sin m�t = G1 cos (m�t − δ) , (33)

where G1 =
√

(Gc
1)2 + (Gs

1)2, tan δ = Gs
1/Gc

1, and the value of
�t = (δ + 2nπ)/m that maximizes the variation depends on the
parameters R and i, where n is an integer. Because the imaginary
part of δT (T , θ ) is negligible compared with the real part, we have
in a good approximation

A(m�) = G1, A(2m�) = G2, (34)

where G2 =
√

(Gc
2)2 + (Gs

2)2, and the Fourier amplitude A(ω j ) is
defined by equation (23). If we define the phase shift δ j , using the
Fourier transform aj given in equation (22), as

tan δ j = Im(a j )/Re(a j ), (35)

we have to good approximation δ = δ j , selecting the integer j so
that 2π fj = m�.

The quantities G1 and δ/(2mπ) defined by equation (33) are plot-
ted as a function of the inclination angle i for the even (k = 0) r mode
with m = 1 in Fig. 3, and for the even (k = 0) r mode with m = 2
in Fig. 4, where we assume �̄ = 0.2, and the dotted, short-dashed,
solid, long-dashed and dot-dashed lines indicate the radii R = 8, 9,
10, 15 and 20 km, respectively. The amplitude G1 vanishes at i =
0 because the temperature variations are proportional to eimφ where
φ = φ′ for i = 0. For given i and R, the amplitude G1 for m = 1
is usually larger than that for m = 2. For a given inclination angle
i, the amplitude A(m�) = G 1 decreases as the radius R decreases.
This is because the maximum angle θ ′

max increases with decreasing
R so that almost the whole surface area of the star can be seen at any
time by the distant observer. For the even modes, the amplitude G1

for a given R monotonically increases with increasing i. As shown
by Figs 3 and 4, the phase shifts δ/(2mπ) for the even r modes are
negative. The absolute value |δ/(2mπ)| for m = 1, which remains
small, increases with decreasing R, and it is rather insensitive to
the inclination angle i for a given R. The absolute value |δ/(2mπ)|
for m = 2 also increases as R decreases and becomes as large as
|δ/(2mπ)| ∼ 0.2 for the smallest R considered here. It shows a weak
dependence on i, particularly for the radii R ∼ 10 km.

The quantities G1 and δ/(2mπ) are given as a function of the
inclination angle i for the odd (k = 1) r mode with m = 1 in Fig. 5,
and for the odd (k = 1) r mode with m = 2 in Fig. 6, where �̄ = 0.2,
and the different curves have the same meaning as in Fig. 3. For the
odd modes, the amplitude G1 vanishes at i = 90◦ also, because the
temperature variation pattern is antisymmetric about the equator of
the star. As in the case of the even r modes, the amplitude G1 for
the odd r modes decreases with decreasing R for a given i. Although
δ/(2mπ) for larger radii R � 15 km remains constant with varying
i, it shows a strong dependence on i for smaller radii R � 10 km.

Fig. 7 shows the amplitude ratio G 2/G 1 for the even r mode with
m = 1 (upper panel) and for the odd r mode with m = 1 (lower panel)
as a function of i. We find the ratio is at most of the order of ∼0.01
for the even m = 1 r modes, which indicates that the first harmonic
component cannot be significant in the light curves produced by a
single even r mode of low m. For the odd m = 1 r mode, on the
other hand, the first harmonic component has appreciable amplitude
compared to the fundamental, particularly when i ∼ 90◦. Actually,
the ratio G 2/G 1 diverges as i increases to 90◦.

As examples, we show as a function of �t/2π the light curves
produced by the even, m = 1 r mode in Fig. 8, and by the odd, m =
1 r mode in Fig. 9, where we assume �̄ = 0.2 and i = 60◦. Fig. 10
shows the light curves generated by the odd, m = 1 r mode as a
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Figure 3. Amplitude G1 and phase shift δ as a function of the inclination
angle i for the fundamental even r mode with m = 1 (C 1 = 0.2, C 2 =
0 and χ = 0), where �̄ = 0.2, and the dotted, short-dashed, solid, long-
dashed and dash-dotted lines are for the radii R = 8, 9, 10, 15 and 20 km,
respectively. Here, the amplitude normalization for the mode is given by
|Re[iTl1 (R)/R]| = 1 at the surface.

function of �t/2π for �̄ = 0.2 and R = 10 km, where the dotted,
short-dashed, solid, long-dashed and dot-dashed lines indicate the
inclination angles i = 10◦, 30◦, 50◦, 70◦ and 90◦, respectively. At
i = 90◦, only the first harmonic component associated with 2m�

appears.

3.2 Dependence on Ω̄

As � increases, the amplitudes of the r modes are more strongly
confined to the equatorial region of the star, which makes the ampli-
tude G1 larger for the even r modes but smaller for the odd modes.
Note that the frequency ω is only weakly dependent on � for the
modes. To see the effects of rapid rotation, we calculate G1 and δ

for the even, m = 1 r mode for �̄ = 0.4, and we plot the results
in Fig. 11, where the different curves represent different radii as in
Fig. 3. We note that the magnitude of the phase shift δ is larger for
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Figure 4. Same as Fig. 3 but for the fundamental even r mode with m = 2
(C 1 = 0, C 2 = 0.2 and χ = 0).

�̄ = 0.4 than for �̄ = 0.2 although δ is still only weakly dependent
on the inclination angle i for the mode.

3.3 Light curves produced by two r modes

Although the even, m = 1 r mode will produce the largest light varia-
tions of the modes considered here, the mode is not likely to produce
a first harmonic component A(2�) of appreciable strength. In order
to account for observed light curves that contain a substantial first
harmonic component, we may need to assume that the r modes with
m = 1 and m = 2 are excited simultaneously. As an example, we
calculate the light curves G(t) produced by the two simultaneously
excited even r modes with m = 1 and m = 2, assuming C 1 = C 2 =
0.2, χ = 0, i = 90◦ and �̄ = 0.2. We plot G(t) as a function of
�t/2π in Fig. 12 and the Fourier amplitudes A(�) and A(2�) as
a function of the radius R in Fig. 13, where the different curves in
Fig. 12 have the same meaning as in Fig. 3. Obviously, using two
r modes with different m, we can produce a variety of light curves,
including those with a harmonic content similar to that seen from
XTE J1814−338 (Strohmayer et al. 2003). It is important to note
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Figure 5. Same as Fig. 3 but for the fundamental odd r mode with m = 1
(C 1 = 0.2, C 2 = 0 and χ = 0).

that, even if we abandon the simplification given by σα1 = −� and
σα2 = −2�, we have in a good approximation 2σα1 = σα2 as shown
by Table 1.

3.4 Phase lags

The amplitudes of the light curves produced by the surface r modes
are inevitably related to the parameters Ci as well as to the ratio
R/M. Because the oscillation amplitudes are difficult to determine
within the framework of a linear theory of stellar pulsations and
the ratio R/M itself is one of our main parameters to determine ob-
servationally, it would be useful to find an additional observable
that can be used as an indicator for the ratio R/M. Considering the
even r mode with m = 1, which is most likely to be responsible for
the light variations, we note that the phase shift δ, which is almost
independent of the oscillation amplitude parameter C1, is rather in-
sensitive to the inclination angle i but is almost a monotonic function
of the radius R (i.e. the ratio R/M) for a given i. If it is true that the
observed light variations during burst oscillations are caused by an
even, m = 1 r mode, it would be possible to use the phase shift δ as an
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Figure 6. Same as Fig. 3 but for the fundamental odd r mode with m = 2
(C 1 = 0, C 2 = 0.2 and χ = 0).

indicator for the ratio R/M. To derive an observable using the phase
shift δ, we calculate the function G E∞ (t) defined in equation (8)
for appropriate values of T 0 and E ∞, and Fourier analyse the func-
tion G E∞ (t) to obtain the phase shift δ j at ω j = � using equa-
tion (35), which we denote δ E . In Fig. 14, we plot as a function of
the inclination angle i the difference δ − δE0 for the even, m = 1
r mode (upper panel) and for the odd, m = 1 r mode (lower panel)
where we have assumed �̄ = 0.2, E∞ = E0 = 1 keV, kBT 0 =
2.3 keV, and the various curves represent different radii as in Fig. 3.
Because the difference δ − δE0 for the even r mode with m = 1 is
almost insensitive to i and its magnitude increases almost monoton-
ically with the radius R for a given i, the difference may be useful as
an observational indicator for the ratio R/M. On the other hand, the
difference for the odd mode shows a strong dependence on i for the
radius R � 10 km. Because the phase shifts δ found in this paper
are due mainly to the Doppler effects associated with rapid rotation
of the star, the magnitude of the difference will be large for higher
�̄ for given M and R.

As shown in Fig. 14, the phase difference, δ − δE0 , for the even
mode is always negative, but that for the odd mode can be positive
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Figure 7. Ratio G 2/G 1 as a function of the inclination angle i for the
fundamental even r mode with m = 1 (upper panel) and for the fundamental
odd r mode with m = 1 (lower panel), where �̄ = 0.2, and the various curves
represent different radii as in Fig. 3. Here, the amplitude normalization for
the mode is given by |Re[iTl1 (R)/R]| = 1 at the surface.

for radii R � 10 km. Here, negative and positive values of δ − δE0

indicate hard leads and lags, respectively, for E ∞ = E 0 = 1 keV
and kBT 0 = 2.3 keV. To compare with observations more directly,
it is convenient to give the phase shift difference, δE − δE0 , between
the phase for E ∞ = E and that for a particular E ∞ = E 0. Examples
are given as a function of the photon energy E in Fig. 15 for the
even r mode with m = 1 for i = 60◦ and in Fig. 16 for the odd
r mode with m = 1 for i = 30◦ (upper panel) and for i = 60◦ (lower
panel), where we have used E 0 = 1 keV and �∞/2π = 400 Hz.
For the even mode we always have negative δE − δE0 , indicating
hard leads (soft lags), as suggested by Fig. 14. On the other hand,
for the odd m = 1 r mode, we have both hard leads (soft lags) and
hard lags, the latter of which occur at smaller radii (i.e. smaller
R/M). Observationally, there is an indication for hard lags during
some burst oscillations; however, others are consistent with no phase
variations with energy (Muno et al. 2003). Because the even, m =
1 r mode generates hard leads (as the hotspot model does), our
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Figure 8. G(t) as a function of �t/2π for the fundamental even r mode
with m = 1 for i = 60◦, where C 1 = 0.2, C 2 = 0, χ = 0 and �̄ = 0.2, and
the various curves represent different radii as in Fig. 3. Here, the amplitude
normalization for the mode is given by |Re[iTl1 (R)/R]| = 1 at the surface.
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Figure 9. Same as Fig. 8 but for the fundamental odd r mode with m = 1.

results suggest that a single even r mode is probably inconsistent
with burst oscillations which show hard lags. However, it might
be possible for an oscillation produced by contributions from both
even and odd modes to match the observed phase lag properties of
burst oscillations. We will explore detailed modelling and fitting,
including the effects of the detection process, in a subsequent paper.

4 D I S C U S S I O N

Let us first in this section give an analytical discussion of the latitu-
dinal dependence of the eigenfunctions for the surface r modes,
following Pedlosky (1987). We also give in the next paragraph
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Figure 10. G(t) as a function of �t/2π for the fundamental odd r mode
with m = 1 for R = 10 km, where C 1 = 0.2, C 2 = 0, χ = 0 and �̄ = 0.2, and
the dotted, short-dashed, solid, long-dashed and dash-dotted lines indicate
the inclination angles i = 10◦, 30◦, 50◦, 70◦ and 90◦, respectively. Here, the
amplitude normalization for the mode is given by |Re[iTl1 (R)/R]| = 1 at
the surface.

an estimate of the amount of energy necessary to excite a surface
r mode to observable amplitudes. The surface r modes considered
in this paper belong to a subclass of the equatorial waves (Pedlosky
1987). In the equatorial β plane approximation, we employ a
Cartesian coordinate system in which the coordinate origin is at
the equator and the x-, y- and z-axes are in the eastward, northward
and upward directions, respectively. The wave equations in the β

plane approximation are solved by applying the method of sepa-
ration of variables, in which a separation constant λ is introduced
between (x , y, t) and z. The separation constant λ is an eigenvalue
that is determined by solving the wave equation in the vertical direc-
tion with appropriate boundary conditions, and reflects the vertical
structure of the thin fluid envelope. Assuming the perturbed velocity
v′

y(x , y, z, t) is given by v′
y ∝ ei(kx+ωt) �(y)V (z), we obtain for the

equatorial waves the dispersion relation given by (Pedlosky 1987)

λω̃2 + k̃/ω̃ − k̃2 = (2 j + 1)
√

λ, (36)

where
ω̃ = ω/(β0 Le), k̃ = Lek,

Le = √
N0 D/β0, β0 = 2�/R. (37)

Here, N 0 is a characteristic value of the Brunt–Väisälä frequency,
D is the depth of the fluid ocean, and the function �(y) is given by

�(y) = ψ j (τ ) ≡ e−τ2/2 Hj (τ )
/√

2 j j!π1/2, (38)

where Hj(τ ) is the Hermite polynomial, τ = λ1/4 y/L e, and j is an
integer. Here, the function V(z) is determined by the wave equation
in the vertical direction. The pressure perturbation for the equatorial
waves for j � 1 is then given by (Pedlosky 1987)

p′(x, y, z, t) = −Re

{
i A j

λ3/4

[
−

(
j

2

)1/2
ψ j−1(τ )

ω̃ − k̃/
√

λ

+
(

j + 1

2

)1/2
ψ j+1(τ )

ω̃ + k̃/
√

λ

]
ei(kx+ωt)V (z)

}
, (39)
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Figure 11. Same as Fig. 3 but for �̄ = 0.4.

where Aj is an arbitrary constant. Because the low-frequency equa-
torial waves at rapid rotation have (Lee 2004)

ω ∼ m N0 D/R

(2 j + 1)
√

λ
, (40)

where we have assumed k ∼m/R, p′(x , y, z, t) reduces to for j = 1

p′(x, y, z, t) ∼ −Re

[
3

2
√

2π1/4

i A1

λ1/4 Lek

(
τ 2 + 1

2

)

× e−τ2/2ei(kx+ωt)V (z)

]
, (41)

and for j = 2

p′(x, y, z, t) ∼ −Re

[
5

3
√

2π1/4

i A2

λ1/4 Lek
τ 3e−τ2/2

× ei(kx+ωt)V (z)

]
. (42)

Knowing that the perturbed potential temperature �′ is approxi-
mately given by �′ = p′/z (Pedlosky 1987), we find that the lat-
itudinal (y) dependence of �′(x , y, z, t) well reproduces that of
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Figure 12. G(t) as a function of �t/2π for the fundamental even r modes
with m = 1 and m = 2 for i = 90◦, where C 1 = C 2 = 0.2, χ = 0 and
�̄ = 0.2, and the various curves represent different radii as in Fig. 3. Here,
the amplitude normalization for the mode is given by |Re[iTl1 (R)/R]| = 1
at the surface.

0

0.02

0.04

0.06

0.08

0.1

0.12

8 10 12 14 16 18 20

A
(Ω

) 
&

 A
(2

Ω
)

R (km)

Figure 13. Fourier amplitudes A(�) and A(2�) as a function of the radius
R for the fundamental even r modes with m = 1 and m = 2 for i = 90◦,
where C 1 = C 2 = 0.2, χ = 0 and �̄ = 0.2, and the solid and dotted lines
indicate A(�) and A(2�), respectively. Here, the amplitude normalization
for the modes is given by |Re[iTl1 (R)/R]| = 1 at the surface.

δT (R, θ )/T 0 in Fig. 2 both for the even r modes ( j = 1) and
for the odd r modes ( j = 2). Note that the solutions having the
frequency (40) correspond to the type 2 solutions discussed by
Longuet-Higgins (1968).

The oscillation energy EW of a mode observed in the corotating
frame may be given by (e.g. Unno et al. 1989)

EW = ω2

2

∫
�Me

ξ · ξ∗dMr = ω̄2 G M�Mo

R
, (43)
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Figure 14. Phase shift difference (δ − δE0 )/(2mπ) as a function of the
inclination angle i for the fundamental even m = 1 r mode (upper panel) and
for the fundamental odd m = 1 r mode (lower panel), where �̄ = 0.2, C1 =
0.2, C2 = 0, and χ = 0, and the various curves represent different radii as
in Fig. 3. Here, we have assumed kBT 0 = 2.3 keV and E ∞ = E 0 = 1 keV
to calculate the function G E∞ (t) and the phase shift δE0 . Negative values of
(δ − δE0 )/(2mπ) indicate hard leads.

where

�Mo = 1

2

∫
�Me

ξ · ξ∗

R2
dMr , (44)

ξ∗ is the complex conjugate of ξ, and �M e is the envelope mass. If
we let �E b and �E p denote the energies released during a burst and
a persistent phase, respectively, we may assume α ≡ �E p/�E b ∼
102 and �E p ∼ εGM�Ma/R, where ε ∼ 0.1 is a factor represent-
ing the efficiency of energy transformation from gravitational to
radiation energies and �Ma = Ṁ�tp with Ṁ ∼ 1016 gs−1 being
a typical mass accretion rate found in low mass close binary sys-
tems is the amount of mass accreting during the persistent phase
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Figure 15. Phase shift difference (δE − δE0 )/(2mπ) as a function of the
photon energy E ∞ = E for the fundamental even m = 1 r mode, where
�∞/2π = 400 Hz, C 1 = 0.2, C 2 = 0, χ = 0 and i = 60◦, and the various
curves represent different radii as in Fig. 3. Here, we have assumed k BT 0 =
2.3 keV and E ∞ = E 0 = 1 keV to calculate the function G E∞ (t) and
the phase shift difference (δE − δE0 )/(2mπ), the negative values of which
indicate hard leads.

�t p ∼ 104s (see, e.g. Frank, King & Raine 2002). We then have

EW = αε−1ω̄2(�Mo/�Ma)�Eb, (45)

which may be rewritten with appropriate normalization as

EW ∼ 2 × α

100

(
ε

0.1

)−1 (
Ṁ

5 × 10−18 M	s−1

)−1

×
(

�tp

104s

)−1 (
ω̄

0.01

)2 (
C

0.1

)2 〈�Mo〉
10−10 M	

�Eb, (46)

where we have defined

〈�Mo〉 = 1

2

∫
�Me

ξ̄ · ξ̄∗

R2
dMr , (47)

assuming ξ = C ξ̄ with ξ̄ being the displacement vector normalized
by |Re[iTl ′1 (R)/R]| = 1. For the r modes discussed in this paper,

we have the ratio 〈�Mo〉 /10−10 M	 ∼ 0.1 for the even r modes,
and 〈�Mo〉 /10−10 M	 ∼ 0.01 for the odd r modes, for �̄ = 0.2
and �M e = 10−10 M	. Note that, although non-linear effects will
be significant and produce strong harmonic components in observed
light curves if the mode amplitudes become as large as C ∼ 1, non-
linear coupling with other modes will tend to saturate the mode
amplitudes (e.g. Lindblom, Tohline & Vallisneri 2002; Arras et al.
2003). Although the estimation given above contains many parame-
ters, all of which are not necessarily well determined, we may expect
that the amount of energy required to excite the modes to apprecia-
ble amplitudes is a modest fraction of that released in a burst. It
is interesting to note that, although the odd r modes need to have
larger amplitudes to produce appreciable light variations than the
even r modes, the former are easier to excite than the latter for a
given amount of energy released in a burst.
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Figure 16. Phase shift difference (δE − δE0 )/(2mπ) as a function of the
photon energy E ∞ = E for the fundamental odd m = 1 r mode for i =
30◦ (upper panel) and for i = 60◦ (lower panel), where �∞/2π = 400 Hz,
C 1 = 0.2, C 2 = 0 and χ = 0, and the various curves represent different
radii as in Fig. 3. Here, we have assumed k BT 0 = 2.3 keV and E ∞ =
E 0 = 1 keV to calculate the function G E∞ (t) and the phase shift difference
(δE − δE0 )/(2mπ), the negative values of which indicate hard leads.

5 C O N C L U S I O N S

We have calculated light curves produced by the surface r modes of
a rotating neutron star, taking account of the effects of gravitational
light bending, gravitational redshift, and the difference in the arrival
times of photons travelling in the static Schwarzschild space–time,
as well as the Doppler shift of photon energy due to rapid spin of the
star. We find that the fundamental even r mode with m = 1 produces
the largest light variations. The light curves produced by a single
even r mode of a given m are dominated by the fundamental compo-
nent with frequency m�, although those produced by a single odd
r mode also contain a first harmonic component of appreciable am-
plitude as well as the fundamental component, the relative strengths
depending on the inclination angle i. The phase shift δ − δE0 pro-
duced by the even m = 1 r mode is only weakly dependent on the
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inclination angle i and is almost a monotonic function of R for a
given i. The phase shift produced by the even r mode with m = 1
is a hard lead. The phase shift produced by the odd, m = 1 r mode,
on the other hand, depends both on i and on R, and there exists a
parameter space of R and i which produces hard lags.

It is useful to translate the phase shift difference into a hard-lag
measure, �t Lag, which is given for �∞/2π = 400 Hz by

�tLag = 2π

�∞

δE − δE0

2mπ
= 2.5

δE − δE0

2mπ
ms, (48)

where negative �t Lag means hard leads. As indicated by Fig. 15, to
fit the observed hard leads ∼ −200 µs at E ∞ ∼ 10 keV for SAX
J1808.4−3658 (Cui et al. 1998) in terms of the even m = 1 r mode
we need slightly smaller values of the ratio R/RG than the smallest
value R/RG = 1.94 for M = 1.4 M	 and R = 8 km we use in this
paper. In fact, Weinberg et al. (2001) have assumed M = 2.2 M	
and R = 10 km for their fit, which is equivalent to R/RG = 1.54,
the value of which is substantially smaller than R/RG = 1.94. As
suggested by Fig. 16, however, the phase shift difference produced
by the odd m = 1 r mode may give a consistent value ∼ −200 µs at
E ∞ ∼ 10 keV for M = 1.4 M	, R = 10 km, and i = 60◦, although
the strong saturation of �t Lag above E � 10 keV is not necessarily
well reproduced.

Heyl (2005) have carried out a similar calculation of light curves
produced by the even r mode with l ′ = 2 and m = 1, using the
formalism by Chen & Shaham (1989), and assuming the surface
temperature is proportional to a uniform component plus a com-
ponent proportional to the local amplitude of the r mode, given in
Longuet-Higgins (1968). Heyl (2005) obtained quite similar results
to ours, showing low harmonic contents and hard leads in the light
curves. He has also shown that the pulsed fraction increases with
increasing photon energy, which is also indicated by Fig. 17, where
the Fourier amplitudes A(�) (solid lines) and A(2�) (dotted lines)
are plotted as a function of photon energy E ∞ for the even r mode
with l ′ = 2 and m = 1 and for the odd r mode with l ′ = m = 1 (filled
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Figure 17. Fourier amplitudes A(�) (solid lines) and A(2�) (dotted lines)
as a function of photon energy E ∞ for the even r mode with l ′ = 2 and m
= 1 and for the odd r mode with l ′ = m = 1 (filled circles) for �∞/2π =
400 Hz, C 1 = 0.2, C 2 = 0, χ = 0, i = 60◦, k BT 0 = 2.3 keV, M = 1.4 M	
and R = 10 km.

circles) for �∞/2π = 400 Hz, C 1 = 0.2, C 2 = 0, χ = 0, i = 60◦,
k BT 0 = 2.3 keV, M = 1.4 M	, and R = 10 km. He argued that the
increase in the pulsed fraction with increasing photon energy would
be useful to identify the mechanism for burst oscillations.

We note that the wave model tends to produce larger-frequency
drifts in a burst than are observed (e.g. Heyl 2004). As a possible so-
lution to this difficulty, Piro & Bildsten (2005) proposed that, as the
envelope cools toward the tail of a burst, the surface r mode trans-
forms through an avoided crossing into a crustal interface mode,
whose frequency remains almost constant during the cooling, per-
haps giving a ceiling to the frequency drifts. However, because there
occurs at the same time a transformation of the crustal interface
mode to the surface r mode through the avoided crossing, in ef-
fect the surface r mode could keep its identity during the envelope
cooling except in the vicinity of the avoided crossing. That is, it is
not obvious from normal mode calculations alone that the r mode
will completely transfer its energy into the interface mode. We think
that hydrodynamic calculations would be important to further inves-
tigate the mode interactions proposed by Piro & Bildsten (2005).
Nevertheless, the properties of the surface r modes are likely to be
influenced by the existence of the crust, so it is important to fur-
ther investigate possible mode interactions (see, for example, Lee
& Strohmayer 1996; Yoshida & Lee 2001).

Compared with the hotspot model, the wave model generally pro-
duces smaller amplitude light variations. This is mainly because the
entire surface of the neutron star produces X-ray emission. On the
other hand, purely sinusoidal light curves observed for most of the
burst oscillators (Muno et al. 2002b) can be explained by assuming
the dominance of a single r mode of a given m, and the existence
of an appreciable first harmonic component may be attributable to
the coexistence of a mode with 2m, or perhaps a superposition of
even and odd modes of different amplitude. As in the case of the
hotspot model, the wave model also gives hard leads in most of
the parameter space, which may be in conflict with the suggested
hard lags seen in some of the burst oscillators, but might be appli-
cable to the hard leads observed from the millisecond X-ray pulsars
SAX J1808.4−3658, and IGR J00921+5934 (e.g. Cui et al. 1998;
Galloway et al. 2005). The parameters employed in the light-curve
calculation include the mass M, the radius R, and the spin frequency
� of the star, the inclination angle i, the mode indices (m, k, n),
and the oscillation amplitudes Cj. Even if we assume that only the
fundamental n = 0 r modes with k = 0 or k = 1 play a role in
producing the observed brightness variations and that the frequency
that appears in the light curves is the spin frequency of the star, we
still have several free parameters that affect the amplitude deter-
mination of the light curves. Perhaps the most crucial parameters
are the oscillation amplitudes, Cj, themselves, which are difficult
to determine within the framework of linear pulsation theory. Fur-
ther theoretical studies combined with model fitting to the observed
properties of burst oscillations will definitely be desired for a better
understanding of the burst oscillations and the underlying neutron
stars.
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